1. 붓꽃 데이터 임포트

from sklearn.datasets import load_iris       # 붓꽃 데이터를 불러왔습니다
iris = load_iris()                            # 부르기 쉽게 명명

features = iris.data.T   # 속성 데이터를 가져오기
features                 # 4개의 속성데이터가 있다

출력>
Output exceeds the size limit. Open the full output data in a text editorarray([[5.1, 4.9, 4.7, 4.6, 5. , 5.4, 4.6, 5. , 4.4, 4.9, 5.4, 4.8, 4.8,
        4.3, 5.8, 5.7, 5.4, 5.1, 5.7, 5.1, 5.4, 5.1, 4.6, 5.1, 4.8, 5. ,
        5. , 5.2, 5.2, 4.7, 4.8, 5.4, 5.2, 5.5, 4.9, 5. , 5.5, 4.9, 4.4,
        5.1, 5. , 4.5, 4.4, 5. , 5.1, 4.8, 5.1, 4.6, 5.3, 5. , 7. , 6.4,
        6.9, 5.5, 6.5, 5.7, 6.3, 4.9, 6.6, 5.2, 5. , 5.9, 6. , 6.1, 5.6,
        6.7, 5.6, 5.8, 6.2, 5.6, 5.9, 6.1, 6.3, 6.1, 6.4, 6.6, 6.8, 6.7,
        6. , 5.7, 5.5, 5.5, 5.8, 6. , 5.4, 6. , 6.7, 6.3, 5.6, 5.5, 5.5,
        6.1, 5.8, 5. , 5.6, 5.7, 5.7, 6.2, 5.1, 5.7, 6.3, 5.8, 7.1, 6.3,
        6.5, 7.6, 4.9, 7.3, 6.7, 7.2, 6.5, 6.4, 6.8, 5.7, 5.8, 6.4, 6.5,
        7.7, 7.7, 6. , 6.9, 5.6, 7.7, 6.3, 6.7, 7.2, 6.2, 6.1, 6.4, 7.2,
        7.4, 7.9, 6.4, 6.3, 6.1, 7.7, 6.3, 6.4, 6. , 6.9, 6.7, 6.9, 5.8,
        6.8, 6.7, 6.7, 6.3, 6.5, 6.2, 5.9],
       [3.5, 3. , 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.4, 3. ,
        3. , 4. , 4.4, 3.9, 3.5, 3.8, 3.8, 3.4, 3.7, 3.6, 3.3, 3.4, 3. ,
        3.4, 3.5, 3.4, 3.2, 3.1, 3.4, 4.1, 4.2, 3.1, 3.2, 3.5, 3.6, 3. ,
        3.4, 3.5, 2.3, 3.2, 3.5, 3.8, 3. , 3.8, 3.2, 3.7, 3.3, 3.2, 3.2,
        3.1, 2.3, 2.8, 2.8, 3.3, 2.4, 2.9, 2.7, 2. , 3. , 2.2, 2.9, 2.9,
        3.1, 3. , 2.7, 2.2, 2.5, 3.2, 2.8, 2.5, 2.8, 2.9, 3. , 2.8, 3. ,
        2.9, 2.6, 2.4, 2.4, 2.7, 2.7, 3. , 3.4, 3.1, 2.3, 3. , 2.5, 2.6,
        3. , 2.6, 2.3, 2.7, 3. , 2.9, 2.9, 2.5, 2.8, 3.3, 2.7, 3. , 2.9,
        3. , 3. , 2.5, 2.9, 2.5, 3.6, 3.2, 2.7, 3. , 2.5, 2.8, 3.2, 3. ,
        3.8, 2.6, 2.2, 3.2, 2.8, 2.8, 2.7, 3.3, 3.2, 2.8, 3. , 2.8, 3. ,
        2.8, 3.8, 2.8, 2.8, 2.6, 3. , 3.4, 3.1, 3. , 3.1, 3.1, 3.1, 2.7,
        3.2, 3.3, 3. , 2.5, 3. , 3.4, 3. ],
       [1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.6, 1.4,
...
        1.4, 1.2, 1. , 1.3, 1.2, 1.3, 1.3, 1.1, 1.3, 2.5, 1.9, 2.1, 1.8,
        2.2, 2.1, 1.7, 1.8, 1.8, 2.5, 2. , 1.9, 2.1, 2. , 2.4, 2.3, 1.8,
        2.2, 2.3, 1.5, 2.3, 2. , 2. , 1.8, 2.1, 1.8, 1.8, 1.8, 2.1, 1.6,
        1.9, 2. , 2.2, 1.5, 1.4, 2.3, 2.4, 1.8, 1.8, 2.1, 2.4, 2.3, 1.9,
        2.3, 2.5, 2.3, 1.9, 2. , 2.3, 1.8]])

2. 데이터로 그래프 그리기(1)

#iris.feature_names[0]                   # 이 특성이 어떤 데이터인지 이름 알고싶을 때
# iris.target                             # 라벨(label =  target) 을 보면 종류가 몇개로 나누어 졌나 확인가능, 0,1,2로 나왔으니 3가지 꽃종류에 대한 라벨이 있음을 알 수 있다/

plt.scatter(features[0], features[1], c = iris.target, s=features[3]*100, alpha = 0.2, cmap = 'viridis')   # 첫번째 특성 데이터와 두번째 특성 데이터에 대한 점도, 컬러는 라벨에 따라 달라지게 만들었다., alpha를 통해 라벨마다 특정 중심을 알 수 있다.
plt.xlabel(iris.feature_names[0])
plt.ylabel(iris.feature_names[1])
iris.target_names[0]                        # 타켓(라벨)의 이름 알고싶을 때
iris.feature_names[3]                       # 특성 이름이 알고 싶을 때

# 데이터가 겹치면 겹칠 수록 노이즈(오차)가 많아지고 분리가 라벨마다 잘될수록 분리가 잘된 데이터이다.

3. 데이터로 그래프 그리기(2)

 
# 다른 feature로도 만들어보자

plt.scatter(features[2], features[3], c = iris.target, s=features[3]*100, alpha = 0.2, cmap = 'viridis')   
plt.xlabel(iris.feature_names[2])
plt.ylabel(iris.feature_names[3])
iris.target_names[0]                       
iris.feature_names[3]

+ Recent posts